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Slotline Impedance
J. J. Lee, Senior Member, IEEE

Abstract—A theoretical model is presented to compute the character-
istic impedance and wavelength in a slotline printed on or embedded in

a dielectric substrate. In this treatment the effects of fringing field
caused by the tlnite width of the conducting strips are taken into

account. The main task was to calculate the capacitance per unit length
of the slotline. First, the Green’s function for the potential of a pair of

filament sources in a dielectric substrate is solved, which was used as a

building block to construct the overall solution of the boundary value

problem. Then the surface charge density on the conducting strips is
found by using a moment method and imposing the source condition

(equal potential) on the conductors. From the surface charge density,
the characteristic impedance of the slotline is computed for various

input parameters. The formulation is applicable to a single-sided, sand-
wiched, or double-sided slotline printed on or embedded in a dielectric
substrate.
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1, INTRODUCTION

A PRINTED slotline on a dielectric substrate without a
ground plane is a novel transmission line suitable for

application not only to microwave integrated circuits, but
also to phased arrays as a feed line for tapered slot radiating
elements. The impedance properties of a slotline have been
studied by many researchers [1]–[12]. Some authors used
conformal mapping to solve the boundary value problems,
such as in [1]. This approach is somewhat limited in that not
all geometries can be mapped into simple topologies for
which standard solutions exist. For instance, when the slot-
line is embedded inside the substrate or when a double-sided
slotline (one on each side of the substrate) is of interest, the
mapping problem becomes intractable. Some authors have
solved the E-field problem with the spectral-domain tech-
niques [6]-[8] or variational methods [9], [10], both of which
are mathematically involved. Others have offered approxi-
mate solutions for special cases of the slotline, such as high
dielectric constants and small gap-to-thickness ratios [5], [7].

The purpose of this paper is to present an analytical
solution which is conceptually simple and straightforward but
general enough to be useful for a wide range of geometries
of the slotline. In this method the slotline is considered to be
infinitely long, and the conducting strips are infinitely thin.
Furthermore, only the static potential field in the transverse
plane of the transmission line is examined. The task is to
compute the capacitance per unit length of the slotline by
solving for the charge distribution on the conducting strips
across the line. With this determined, the characteristic
impedance can be computed by the standard method based
on a quasi-TEM analysis [9]. Since the potential arising from
a charged filament is well known, the boundary value prob-
lem can be simplified by dividing each conducting strip into a
large number of filaments. To find the charge distribution on
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Fig. 1. Geometry of a general slotline printed on or embedded in a
dielectric substrate. Note that the width of each conducting strip is
finite. Formulation can be applied to a double-sided line also.

these subdivided strips, the well-known moment method [13]
is employed and the source condition of equal potential on
the perfect conductors is imposed. A computer program has
been written to solve the linear equations by using the
standard method of matrix inversion.

In the following sections the analytic formulation and
several rxactical examcdes will be given. Numerical data for
the slotline characteristic impedance for various input pa-
rameters will also be discussed. Comparisons with other
studies indicated that the impedance results agree very well
with the data published by Okean [1] and Yamashita [10].

II. FORMULATION OF THE PROBLEM

A conventional slotline is formed by etching a slot in a
conducting plane printed on a dielectric substrate, as shown
in Fig. l(a). A more general case, however, is shown in Fig,
l(b), where the slotline is embedded in the substrate (it need
not be sandwiched in the middle of the dielectric layer).
Another case of interest is the double-sided line, shown in
Fig, 1(c), where a slotline is symmetrically printed on each

side of the substrate. Fm simplicity, it is assumed that the
dielectric slab extends to infinity in the horizontal direction

(x axis), but the width of each conducting strip, w, is finite,
The first step of this approach is to find the Green’s

function for the potential produced by two oppositely charged
filaments embedded in the substrate, as shown in Fig. 2.
Note that, for practical applications, only the odd-mode
impedance between the filaments is studied. Let the fila-
ments be symmetrically located at (X(), Y()) and ( – Xo, Yo)
inside the slab, which has a dielectric constant e and a
thickness T. The field point or the observation point is
designated as (x, y),

Outside the substrate the potential field satisfies the
source-free Laplace equation V2~ = O, so the homogeneous
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Fig. 2. Coordinates fortheboundary value problem. Theoddsymme-
try of the source filaments was taken into account to simplify the
derivation.

solutions are in the forms of sin kx x, cos kX x, and
exp ( + kX y). In terms of these Fourier components the gen-
eral solution for region I above the substrate can be repre-
sented by

@(x, y)=~rnAsin kXx. e-kXydkX (1)
o

in which A stands for the complex amplitude of the spectral
component, a coefficient which remains to be found from the
boundary conditions. Note that the cosine terms have been
excluded from (1) because of the odd symmetry.

For region II, the solution can be written as

@(X,Y)=& in ~ + ~“sin kxx(lllek~y + B2e-~~y)dkX

(2)

where

rl=[(x– xo)2+(y–yo)2]1’2

r2=[(x+ xo)2+(y–yJ2]1’2

are the distances from the field point to the two source
points respectively. In the above, the first term represents
the particular solution arising from the two line sources, and
the second term represents all the homogeneous solutions
required to account for the discontinuity at the dielectric
interface.

Similarly for region III the solution is given by

@(x, y)=~mCsin kXx. e~’ydkX (3)
o

The next step is to impose the bounda~ conditions so that
the four coefficients A, Bl, B2, and C can be determined.
First, at y = T the potential must be continuous, so from (1)
and (2) it leads to

J(M Ae-k.T– B1e~xT– B2e-~lT) sin kXxdkX
o

An inverse sine transform (for example, [14]) on (4) gives

Ae–kzT _ B1ekxT _ B2e–kxT

9

/

m,n(x+xo)2+(T-yo)2.—
27T2E o (x-xo)2+(T-yo)

, sin kXx&, (5)

Using an integral table [15], one obtains

Ae–k.T— B k.T_ B2e–k.T~e

q— sin kXxoe ‘kxIT–YoJ. (6)
rekx

The second boundary condition is to require the normal
component of the electric displacement vector D (flux den-
sity) to be continuous across the dielectric boundary

i.e.,

m

~ [(kX ● B2e -k,T’- B1ek.vT) - .OAe-kXT] sin kXxdk
x

q
.—

[1

~ln~ .
2’rr ay ‘1 y=T

(7)

This equation can be reduced by taking the derivative first
and then carrying out the sine transform, or vice versa. The
result is

–k.T _ ~lek~T) – eoAec(B2e –kxT

9.
. —— sm kXxoe ‘kX@-yO), (8)

wkX

Following the same procedure one can impose the identi-
cal boundary conditions at y = O. This will provide two more
equations for the four coefficients, with the results given by

B,+ B2 –C= – ~~e-k’y’’sinkxxo (9)
x

and

From (6), (8), (9), and (10), one can solve for B1 and B2,

giving

●he -k,, (T–Y(,) + ~ e –kAT+yo)
—

Bl=~ sin kXxo 2 k,<T _c~e-kxT (11)
x e+e

and

B2=-&
●+ ekvfT-Y(j) + ● _ e–k.(T–y,))

sin kXx{) 2 kcT (12)
●+e –~?e -kzT

,x
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Fig. 3. Each conducting strip is represented by a large number of
filaments. By linear superposition the potential produced by the two
strips can be found from the Green’s function.

When ~ = ●0, for the special case of no dielectric disconti-

nuity, one can verify that B1 = Bz = O, and

A=~ sin kxxoe–k’y~
m-eokx

c=~ sin kXxoek’y~.
rreokz

(13)

In this case, as a check, the potential function in either
region degenerates into

ml
4(x, y)= ~~ — sin kXxOsin kXxe-k’(y-y”)dkX

Teo o kX

9 *n(x+xo)’+(Y-Yo)’
—.—

4T~il (.x -Xo)’+(y - y,)’

9
=—lnz

27rEo r~
(14)

which is nothing but the familiar potential function for two
oppositely charged filaments in free space.

In summary, with B1 and B2 determined, the potential
function given by (2) represents the Green’s function of the
electric field caused by a pair of delta filaments in region II.
This Green’s function will be used to construct the total
potential arising from two conducting strips printed on or
embedded in the substrate,

III. MOMENT METHOD FOR CHARGE DISTRIBUTION

Referring to Fig. 3, let each conducting strip be divided
into N segments, with each segment approximated by a
filament. Assume that the ith filament on the right-hand
strip, located at (xi, b), carries charge density qi per unit
length and that its counterpart on the left-hand strip carries
charge density – qi. Then by linear superposition the total
potential in the transverse plane arising from these N pairs
of filaments is

N

@( X>Y)= z 4,(qijx, Y,xo=xi, Y()=b). (15)
i=l

Now the task is to solve for the charge density distribution
represented by N unknown q,’s. This is accomplished by
im~osin~ the eaual Dotential condition on the N filaments..- . .

one at a time. This will provide N equations:

N

‘j(xj, yj) = Z @ij(917xj> Yj=b, xL)=v
/=1

(j=l,2,.., N).

(16)

In the above, when j = i, x, is offset slightly from xi to avoid
singularity in the logarithmic term. More specifically, these
N equations can be put in the form

91~11+ 92P’1 + “ “ “ +q#~~= v

qlpl’ + 92PZ2 + “ “ “ + qNpN2 = V

!?lPIN + 92P2N + “ ‘ “ + qNpNN = V

where P,j is given by

1 X,+xz E_

/

co sin kzxi sin kXxJ
Pi]=— —

276 ln Ixj– XII + ~ o kx(~~–c!e-2k’T) “

(17)

[ ●+e 1–2kr(T–yo)+26 ~–2k.T+ ●+ e–zkxy~ dkxa (18)

A shorthand matrix notation for these equations is

[1[1

v
[p,,] :’ = : .

qN v
From (19) the charge density is given by

(19)

l::)=[p[J]-lIil’20)
where C,, are the elements of the inverse matrix of [Pi,]. The
total charge Q is then

Q= ~qj= ~ ~cijv. (21)
j=l j=li=l

With Q determined, the unit capacitance of the transmission
line is computed by

Zv = : .;, ,:, cij.Ct=g (22)
J–

The factor 2 accounts for the fact that the two conducting
strips are charged to plus and minus V volts with a differ-
ence of 2 V. From this capacitance the characteristic
impedance, wavelength, and effective dielectric constant of
the slotline can be computed by

Zc = (c. /c’) 1’2Z()

A = (CfJ/C’)1’2A(J

ce~ = C’/co (23)

where Z(J and C,, are the characteristic impedance and unit
capacitance of the slotline when there is no dielectric loading
of the substrate (c = •t~), and Z() = (coC())- 1, with co being
the speed of light in free space.

It should be remarked that the parameter b determines
the location of the conducting strips in or on the substrate.
For b = T the conducting strips are printed on top of the
substrate. If b is less than T, the conducting strips are
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embedded inside the dielectric substrate. The formulation 1207 I I ? I 1
just derived is valid for either case. Furthermore, if it is a
double-sided slotline, the potential function can be extended
by linear superposition to include two parts, one for a
slotline printed on the top (b= T), and the other on the
bottom (b= O).

The procedure described above is actually a moment
method in its simplest form, i.e., a well-known point-match-
ing technique by using delta functions as the basis and test
functions. By this method many electrostatic and dynamic
problems can be solved to a high degree of accuracy. A
detailed treatment can be found in [13].

IV. NUMERICAL RESULTS

Based on the formulas presented in Section III, a com-
puter program with fewer than 100 lines was written to
compute the slotline impedance for various input parame-
ters. For most practical designs, the dielectric constant ranges
from 2 to 13, and the slot gap is usually small compared with
the width of each conducting strip. Also, both the slot gap
and thickness of the substrate are a small fraction of the
wavelength.

It can be seen from (18) that, in theory, the contributions
of all the spectral components must be integrated to match
the boundary conditions. In practice, however, owing to the
attenuating factors BI and B2, the integration can be trun-
cated at a finite point. It was found that a wavenumber of
100 for kX is more than adequate to yield an accurate
solution, and about 200 points are sufficient for the numeri-
cal integration. In the following paragraphs the characteristic
impedance of the slotline as a function of various geometric
parameters is discussed.

Shown in Fig. 4 is the characteristic impedance of a
single-sided slotline versus the slot width for two different
line widths of the conducting strips. The dielectric constant
of the substrate is 9.6 and the thickness of the dielectric slab
is 0.063 in, (1.6 mm). The impedance decreases as the width
of the strip is increased. This effect indicates that the fring-
ing field extends to the outer edge of the line, in this case,
more than ten times the slot width.

In this figure the solid curves were computed by the theory
presented here, while the dotted onesl were based on
Okean’s conformal mapping [1], which was known to agree
with Yamashita’s variational method [10], It can be seen that

the data derived from these approaches agree fairly well with
each other. But the advantages of the new theory lie in the
fact that it is straightforward and more flexible to use,

Fig. 5 illustrates the dependence of the characteristic
impedance on the dielectric constant of the substrate. It was
learned that a high dielectric constant and a slot width less
than 20 roils (0,5 mm) are required to achieve a line
impedance of 50 Cl. The parametric curves become more
closely spaced when the dielectric constant is greater than 8.
This implies that the effect of the dielectric constant is
diminishing and the electric field does not penetrate too
deeply below the gap in the substrate.

As the thickness of the dielectric substrate is increased
from 0.02 to 0,04 in. (0,5-1.0 mm), the impedance is reduced
by about 10%, as shown in Fig. 6. For a slot width of 40 roils

1Courtesy of Kuan Lee’s computer program, which is based on Okean’s
formula [1, fig. l(d)].
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Fig. 4. Comparison between this theory and two published models.
The dotted line was based on Okean’s formula, which is known to agree
with Yamashita’s method.
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Fig. 5. Parametric curves of characteristic impedance versus slot width
show the dependence of Z,, on the dielectric constant of the substrate
for the given width and thickness.

(1 mm), the characteristic impedance stays as high as 80 !2
even for a relatively high K (9.6) material. So, in practice, it
may be more convenient to include a transformer section in
the feed line.

Again, the data of this example agree very well with that
calculated by the method described in [1]. In fact, the differ-
ence is so small (less than 0.5%) that it cannot be shown in
the plot. But the approximation used in [1] becomes inaccu-
rate when the slot width or thickness is not small compared
with the width of the conducting strip.

As defined in (23), an effective dielectric constant can be
computed to determine the effect of dielectric loading and
the wavelength along the slotline, An example is shown in
Fig. 7, which corresponds to the case discussed in Fig. 5. For
a slot width of 0.04 in., the effective dielectric constant is
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Fig. 6. Characteristic impedance versus slot width as a function of
substrate thickness. This is for the case of .s, = 9,7 and w = 0.5 in.

u

x

0.02 0.04 0.08 0.08 0.10 0.12

SLOT WIDTH, S (INCHES)

Fig. 7. Effective dielectric constant of the case shown in Fig. 5. For
s = 0.04 in. the effective dielectric constant is approximately the square
root of .5,.

approximately the square root of the actual dielectric con-
stant of the substrate.

To gain some physical insight into the boundary value
problem, it is interesting to study the electrostatic charge
distribution across the conducting strip for a given geometry.
Shown in Fig. 8 is the charge density profile on each conduc-
tor of the slotline for two low-dielectric cases. The horizontal
axis displays the locations of 40 points on a conducting strip
from the inner edge to the outer one. As expected, the
charge density peaks at the inner edge of the slotline, but it
is interesting to see a pedestal tail at the outside edge of the
conducting strip, This is actually not too surprising if one
remembers that when only a single strip is charged up the
surface charge density symmetrically peaks at both outer
edges owing to the repulsive force of the same kind of

15*
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0 10 20 30 40

POINTS ON CONDUCTOR

Fig. 8. Surface charge density on each conductor in the transverse
plane. Note that the charge is shifted to the inner edge of the strip.
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Characteristic impedance of a double-sided slotline. It is about
25% lower than the value of a single-sided slotline.

charge. When two parallel conducting strips are oppositely
charged, however, the surface charge density on each strip is
shifted to the inside edge, resulting in the density profile
shown in Fig. 8.

The characteristic impedance of a double-sided slotline is
shown in Fig. 9 for some typical design parameters. When
compared with Fig. 5, the impedance is seen to drop about
25% because of the additional line printed on the other side
of the substrate. A double-sided line is symmetrical in terms
of dielectric loading and field distribution, so it is expected
to be less dispersive and more suitable to be used as a feed
line to drive a tapered slot element for wide-band array
applications, Also, the symmetrical configuration may reduce
the cross polarization in the radiation pattern of the tapered
slot element,
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Fig. 10. An experimental setup to measure the characteristic
impedance of the slotline. The inner conductor is soldered to one strip
andtheouter issoldered totheother. To balance the measurement, the
connection is reversed on the other end of the slotline.
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Fig. 11. Acomputed VSWRcurve versus frequency fora 100 Q line.
From the peaks one can calculate the line impedance.

V. MEASWRED DATA

To verify the accuracy of the theoretical model, a simple
experiment was conducted. As illustrated in Fig. 10, a slot-
line with 0.050 in. gap was printed on a low-K (2.55) sub-
strateof 0.063 in. thickness. Theslotline was terminated with
a 50 Q load, and its input VSWR was measured. It can be
shown that for such an arrangement if the unknown charac-
teristic impedance of the slotline is ZO, the maximum input
VSWR of the slotline is given byz

VSWRn = ( 20 /50)2.

Thus the characteristic impedance of the slotline can be
readily determined by taking the square root of the maxi-
mum VSWR and multiplying the number by 50 0. For
example, the input VSWR of a 100 0 line versus frequency
is plotted in Fig. 11, in which the line length is 10 in, and the
effective dielectric constant is 2.4.

In reality, a small amount of reactive loading at the input
and output junctions is inevitable. In this case the peaks of
the VSWR cume will vary depending on the local geometry
of the junctions, the connectors, and the experimental setup,
If the reactive loading is purely shunt capacitive, the peaks
will gradually decay in amplitude. If, on the other hand, the
loading is inductive, the peaks will grow. In general, some
combination of capacitive and inductive loading exists and it
is frequency dependent. So some error in the measurements
was expected.

‘See, for example, R. E. Collin’s derivation in Foundations for M-
crowaue Engineering (New York McGraw-Hill, 1966, pp. 224-226). It
becomes evident by setting r~ = - rl in eq. (5,35) of this book to find
the maximum reflection and VSWR for the case shown in Fig. 10,
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Fig. 12. Comparison between calculated and measured impedances for
a single-sided slotline with a fixed gap. Measurements were conducted
by trimming the line width of each strip.
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Fig. 13. Comparison between calculated and measured impedances for
a sandwiched slotline.

Shown in Fig. 12 is a comparison of the computed and the
measured characteristic impedance of a single-sided slotline
just described, The data were taken by keeping the slot width
constant while reducing the line width from 1,0 to 0.1 in. The
variance between the computed and measured data is about
670 over a limited number of sample points. No rigorous
effort has been made to resolve the discrepancy. However,
the general trend of the impedance as a function of line
width appears to be in good agreement.

As a further check, a sandwiched slotline was also con-
structed by placing a dielectric substrate of the same thick-
ness on top of the previous slotline, Again, the characteristic
impedance of the sandwiched line was measured. The
impedance results versus the line width are shown in Fig. 13.
It can be seen that in this case the match between the theory
and the measured data is better than that of the single-sided
line. At this time no investigation was made to determine if
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the numerical techniques or the measurements can be re-
fined to produce a closer agreement.

VI. CONCLUSION

The boundary value problem of a slotline printed on or
embedded in a dielectric substrate has been studied. The
analysis was simplified by dividing each conducting strip into
a large number of filaments, because the Green’s function of
a filament source in such a geometry can be readily derived.
This Green’s function was used as a building block to con-
struct the overall solution for the potential generated by the
slotline. To solve for the surface charge density on the
conductors, a moment method was applied and the source
condition of equal potential on the conducting strips was
imposed. With the charge distribution determined, the ca-
pacitance per unit length of the slotline, and hence its
characteristic impedance, could be computed for various
input parameters.

The formulation presented here is general and valid for
various slotline geometries, The solution can be used to
compute the characteristic impedance and wavelength of a
single-sided, a double-sided, or a sandwiched slotline. This
model is conceptually simple and numerically efficient.
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